The Critical Need for Nuclear Medicine Radioisotopes and Research

University of Missouri Research Reactor Center's Radioisotope Production and BNCT Research

13 October 2009

University of Missouri – A Unique Set of Resources

College of Engineering

Life Sciences Center

College of Veterinary Medicine

MURR Center

University of Missouri Research Reactor Center

The MURR Center — a Global Resource

- A 10 MW reactor that operates 24 hours a day, seven days a week, 52 weeks a year, 20 year NRC license extension submitted in 2006
- >150 full time & >30 part-time employees
- In 2008 produced 49 different isotopes with \sim 1000 shipments to 14 different countries
- Each and every week MURR supplies the active ingredients for FDA approved Quadramet[®] and TheraSpheres[®]

MURR Core Competencies include Strong Record of Regulatory Compliance

ATTS OF

Recent Infrastructure Upgrades

R&R Grant, DOE, \$6.6M, 9/29/00 - 12/31/08

Description	Expenditu
New Fire Detection/Suppression System	713,919
New Primary and Pool Coolant Heat Exchangers (3)	578,780
2006 Beryllium Reflector	533,624
Engineering Assessments for relicensing	519,721
Radioactive Liquid Waste Disposal System Upgrades	430,810
Facility Electrical Distribution System Upgrades	424,566
Security & Surveillance Enhancements	326,94
Revised/Updated Safety Analysis Report for relicensing	288,000
Hot cell Processing	160,665
New Reactor Plant Make-Up Water Storage Tanks (2)	149,423
New Stack Monitor	119,429
New Control Blades	115,647
Containment Building 15-Ton Overhead Crane Catwalk	95,436
New Graphite Reflector Elements	84,831
Reactor Instrumentation Upgrades	65,097

MURR Radioisotopes

Isoto	pes Shipped in 2008	B (49)
As-76	Ho-166	S-35
Au-198; Au-199	Ir-192	Sb-122; Sb-124
Ba-135m	K-42	Sc-46
Ca-45; Ca-47	La-140	Se-75
Ce-141	Lu-177	Sm-153
Co-60	Na-24	Sn-125
Cr-51	Nd-147	Sr-89
Cs-134	P-32; P-33	Tb-161
Eu-154	Pd-109	Tl-204
Fe-55	Pm-149	Y-90
Fe-59	Pt-195	Yb-169; Yb-175
Gd-159	Rb-86	Zn-65
Ge-71	Re-186; Re-188	Zr-95; Zr-97
Hg-197; Hg-203	Rh-105	

Other Reactor Producers

- Domestic, Non-DOE
 - MIT (5 MW) Gold, Yttrium, and Irridium research quantities
 - UC Davis (2 MW) Currently improving Iodine -125 production system, Argon-41 and Sodium-24 as tracers for the Oil industry
 - Oregon State (1 MW) non-routine Gold and Silver as biotracers, Sodium and Rubidium as environmental tracers, Argon and Sodium for industry
 - Texas A&M (1 MW) Various as environmental tracers
- Foreign Sources
 - Petten Netherlands, Mo-99, Lu-177
 - BR-2 Belgium, Mo-99, I-131, Xe-133, Ir-192
 - Russian Institutes P-32, P-33 Sr-90, W-188
 - South Africa Mo-99, Lu-177
 - NRU Canada Mo-99
 - Poland various
 - Australia various, mostly for in-country use, Mo-99

University of Missouri -MU Research Reactor Center

A 25-year history of successful and innovative radiopharmaceutical R&D and collaborations with industry....

- CeretecTM (with Tc-99m), a diagnostic used to evaluate cerebral blood flow in patients & label white blood cells
- **Quadramet**[®] (with Sm-153), a therapeutic for treatment of pain associated with metastatic bone cancer
- **TheraSphere**[®] (with Y-90), a glass microsphere used to treat patients with inoperable liver cancer
- Cesium-131 brachytherapy seeds to treat prostate cancer
- Gd-159 and Ho-166 for research in skeletal targeted radiopharmaceuticals
- Iridium-192 brachytherapy seeds to treat solid tumors
- Lu-177 and Pm-149 for receptor-targeted radiopharmaceuticals (support 30 research and clinical trials)
- P-32 and P-33 biomedical radiotracers
- Se-75 biomedical radiotracers

MURR Core Competencies include Volume Radiochemical Processing

Lu-177

Hot Cells Designed with Versatility in Mind

Weekly producing 40 Ci batches

Potentially capable of 1000's Ci per week

1st Application...200 Ci batches of Ho-166Designed for 500 Ci Batches

P-33 Hotcell Facilities

MURR Competencies FDA-approvable cGMP and GLP Programs

FDA Approvable ...cGMP Facilities

Radiopharmaceutical Research

Currently developing a suite of *carrier free lanthanides* to work in conjunction with *selective targeting agents* to locate and treat cancer.

Ln	† _{1/2}	β_{max}	$E_{g}(I_{g})$	(cell diameter)
¹⁷⁷ Lu	6.7 d	0.5 MeV	208 keV (11%)) 20
¹⁶⁶ Ho	1.1 d	1.8 MeV	286 keV (3%)	60
¹⁴⁹ Pm	2.2d	1.1 MeV	81 keV (6%)	120

Radiopharmaceutical Research MURR ¹⁷⁷Lu

- Currently being evaluated in over 30 clinical applications for radiotherapy of cancer
 - Metastatic prostrate cancer
 - Non-hodgkins lymphoma
 - Neuroendocrine tumors
 - Ovarian cancer
 - Metastatic bone cancer
 - Colon cancer
 - Lung cancer
- MURR upgrading process to meet FDA guidelines for Clinical grade production

Essential Isotopes, LLC Cyclotron – GE 16.8 MeV PET Trace

Cyclotron Produced Isotopes

Essential Isotopes, LLC currently producing:

- Fluorine-18 FDG -Imaging agent
 - Multiple commercial customers
 - Phase Two clinical trials in Kansas City and St. Louis
- Copper-64
 - Collaboration with Washington University
 - Used to study genetic diseases such as Wilson's and Menke's
- More isotopes planned
- Have built-in facilities to support on-site imaging trailer.

Need for Mo-99/Tc-99m

- Tc-99m is used in over 80% of all medical isotope procedures worldwide.
- National need used \sim 50,000/day in U.S.
- Use is expected to increase ~5% annually for the next ten years.
- More than 30 different radiopharmaceuticals use Tc-99m for disease detection & organ structure & function.

U.S. History of Mo-99 Production

- 1967 MURR begins production of (n, γ) Mo-99 for Mallinckrodt Nuclear Co.
- 1969 MURR begins weekly production of Mo-99.
- 1977 MURR increases Mo-99 production for MediPhysics Inc.
- 1980 Cintichem, Inc. begins production of HEU fission product Mo-99 and is the single U.S. supplier.
- 1984 MURR ceases Mo-99 production.
- 1989 Cintichem reactor develops leak and is closed.
- 1991 DOE purchased Cintichem technology, equipment and DMFs for production of Mo-99, I-125, X3-133
- 1991 DOE identified Omega West Reactor at LANL as proposed backup supply facility and constructs processing facility.
- December 1992 Omega West Reactor at LANL develops leak and is closed.
- Until 1993, two Canadian reactors, operated by Atomic Energy of Canada Limited (AECL) at the Chalk River site (located about 100 miles from Ottawa, Canada), were available to produce Mo- 99.
- 1996 DOE selects Annular Core pulse reactor at Sandia National Lab. to become backup supply facility and constructs processing facilities. Project never completed.
- 1998 Canadian MAPLE reactors were scheduled to open, but remain shutdown today due fundamental design flaw.
- 2006 begins feasibility studies to produce LEU fission Mo-99
- 2008 Decision made to discontinue work on MAPLE 1 & 2.

Mo-99 Production at MURR

- Overall objective is to develop the capability to produce Mo-99 from LEU targets.
- Production objective is ~50% of current U.S. weekly demand.
 - Current U.S. weekly demand is estimated to be 6000 six-day Curies (Ci) per week
 - 6000 six-day Ci equates to about 40,000 Ci (End-of-Irradiation), Synonymous with "Out-of-Reactor" Ci
 - Must irradiate / process 40 50 targets per week to satisfy ~50% weekly demand.

Reactor Plan View

09.11.2009

Proof of Concept -DU Cold Process

5.2 Depleted Uranium (DU) foil in 1.02 g Nickel envelope
Dissolve under heat and pressure
Evacuate dissolver to cold-trap to remove gasses
Perform chemistry in glass-ware
Collect final product and assay
Two bench-top chemistry trials produced > 90% Molybdenum carrier recovery

➤Full "cold" process in hot cell produced greater that 94% recovery

Proof of Concept -Hot Cell Modifications

Identify Hot Cell
Decontaminate cell interior
Remove processing subfloor
Add shielding for LN2 system

- Design and install LN2 system for cold finger gas trap
 - Modify exhaust to include carbon filtration
- Design and install chemistry handling apparatus

Target Geometry Annular vs. Plate

A	NL LEU - Foll Target			
U Mass = 20 g	Enrichment ≈ 19.8%	235U Mass ≈ 4	9	
	HUILIN	olailuth		ulilu
		111111111111 11 11	 6	
	Typical Dispersion F	Plate Target	1 1 6	+ + + + +

Proof of Concept Sample Target Holder

Proof of Concept Target Cutter Assembly

Target Loading Density Effective Use of Irradiation Space

Photos Courtesy of NRG Mo-99 CRP Workshop Vienna, November 2006

Target Loading Density Effective Use of Irradiation Space (Cont'd)

Batch of Eight (8) Targets in Transit to Irradiation Position

Why MURR?

- The largest university operated research reactor in the U.S.
 - MURR sets the example for safe and efficient operation for U.S research reactors.
- University of Missouri and MURR are leaders in the development and supply of radioisotopes for research and medical uses.
- Demonstrated experience
 - 24/7 operations 52 weeks a year
 - >150 Full-Time Employees
 - Radioisotopes shipped around the globe every week
 - FDA cGMP and cGLP programs
- Only real need is a processing facility.
- Realistic timeline to reach large-scale production (2012-2013).
- Support of Missouri Congressional Delegation.

Reactor Parameters: HEU to LEU

MURR is a pressurized, reflected, heterogeneous, open pool-type, which is light-water moderated and cooled

• Maximum thermal power $-10 \rightarrow 12$ MW

3

- Peak flux in center test hole $6.0 \rightarrow 6.4E14$ n/cm²-s
- Core 8 fuel assemblies (775 \rightarrow ~1410 grams of U-235 per assembly)
- Control blades 5 total: 4 boral shim-safety, 1 SS regulating
- Reflectors beryllium and graphite
- Forced primary coolant flow rate 3,750 gpm (237 lps)
- Forced pool coolant flow rate 1,200 gpm (76 lps)
- Primary coolant temps 120 °F (49 °C) inlet, 136 \rightarrow 139 °F (60 °C) outlet
- Primary coolant system pressure >75 psia (586 kPa)
- Pool coolant temps 100 °F (38 °C) inlet, 107 °F (42 °C) outlet
- Beamports three 4-inch (10 cm), three 6-inch (15 cm)

RERTR Working Group Meeting – January 2008

Oak Ridge National Laboratory